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Abstract 

Check2D is a camera calibration software package that has been developed by the authors for 

use in 2D kinematic analysis, when using camera images that exhibit lens distortion.  The 

motivation for this study was to illustrate the need for accounting for lens distortions when 

using consumer level cameras with a zoom lens on wide setting or a wide angle lens.  

Distortions in the image, due to lens distortion and de-centering, influence the accuracy of 

reconstructed coordinates.   

The planar calibration method was used to obtain the intrinsic and extrinsic camera 

parameters required for 2D kinematic analysis.  A case study is described to illustrate the 

practical considerations which are involved in using this calibration technique.    The 

accuracy of the method is quantified using a scale model of the swimming pool, and 

compared to the 2D direct linear transformation method (DLT).  The root mean square error 

values were 19 mm and 83 mm for the Check2D and 2D-DLT methods respectively (in the 

direction of the swimmers motion).  The better accuracy achieved using the Check2D 

software demonstrates the suitability of the planar calibration method for 2D kinematic 

analyses.   

 

 

  



3 
 

1. Introduction 

Two-dimensional (2D) kinematic analyses of sporting activities are commonly 

performed using a single camera. A typical analysis aims to identify the position of an object 

on either an orthogonal plane (to the camera) or a perspective projected plane. This paper 

describes the use of a new camera calibration toolbox (Check2D) to illustrate the need for 

accounting for image distortions when wide fields of view are used in 2D kinematic analysis. 

In 2D kinematic analyses, a wide field of view (FOV) is often used to achieve the 

required field-of-view when spatial constraints restrict the options for the position of the 

camera
1
.  This may be in a laboratory environment or in a competitive sporting environment 

where stadia layout and/or access restrictions limit the choice of filming location.  The effects 

of out-of-plane and perspective error, as well as methods for their correction, have been well 

documented
2,3

. However, the effects of lens distortion in images (for 2D kinematic analyses) 

have not been well documented. The impact of neglecting lens distortions has been 

demonstrated by previous authors
4
, who reported reconstruction errors of 0.35 ± 0.27 m when 

filming calibration markers on a football pitch with a standard lens. 

In this study, we focus on 2D kinematic examples where the object (athlete) moves 

across a planar surface.  In general, this gives a perspective projection of the plane due to 

practical restrictions on where the camera can be placed.   The Direct Linear Transformation 

(DLT) method
5
 is used extensively in sport biomechanics to reconstruct position data from 

perspective projected images.  However, a wide FOV (on consumer level cameras) typically 

induces distortions in the image
6
.  A planar modification of DLT, termed 2D-DLT, calculates 

eight DLT coefficients necessary to reconstruct the 2D position of a point on a plane
7,8

.   The 

accuracy of 2D-DLT reconstruction is dependent on a number of factors. Increasing the 

number of calibration points from a minimum of four (required to calculate coefficients) has 
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been shown to reduce 2D-DLT reconstruction error
9
. Brewin and Kerwin

3
 showed that 

reconstruction error was higher for points located outside of the volume enclosed by the 

calibration points.  The effect of lens distortion can be calculated using 2D-DLT
10

.  However, 

this method requires a relatively large number of calibration points to calculate the 

coefficients, and this is one possible reason why this method is rarely adopted in 2D 

kinematic analyses. 

Another method to handle lens distortion in 2D kinematic analysis involves the 

segregation of the control volume plane into a grid, and the calculation of local DLT 

coefficients for each cell in the grid.  A method based on this principle is used in the SIMI 

Motion software (SIMI Reality Motion Systems™).  However, this procedure has two major 

practical issues which are (1) calibration points evenly distributed across the control volume 

are rarely available and (2) the time cost involved in accurately measuring these points makes 

this method inefficient. 

An alternative to 2D-DLT calibration involves use of a non-linear camera calibration 

technique
11

 to determine the intrinsic properties of the camera (focal length, optical distortion 

and de-centring distortion).  This method uses multiple images of a planar pattern with 

known geometry.  This can be a regular pattern of black dots on a white background, for 

example, but most commonly involves using a checkerboard pattern
1,6,12,13

.    Silvatti et al.
12

 

concluded that the planar calibration method was a highly accurate alternative to nonlinear 

DLT for underwater 3D analysis of swimmers.  The MATLAB Camera Calibration 

Toolbox
13

 has been used to show that the planar calibration method gives a more accurate 

reconstruction of a tennis court geometry, when compared to the 2D-DLT method
1
.   In that 

paper, a standard HD camcorder (JVC™ Everio GZ-HD40EK) was used on the widest field-

of-view setting.  Dunn
1
 calculated lens distortions of up to 30 pixels, and demonstrated that 

the planar calibration method gave a more accurate reconstruction compared to the 2D-DLT 
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method.  This paper describes the practical application of the planar calibration method using 

the freely available Check2D software. 

 

2. Planar calibration method 

The most basic camera model is an ideal pinhole model
14

.  In this type of model, the 

camera aperture is assumed to be a point and no lenses are used to focus the light on the 

image sensor.  This means that a pinhole camera model can only be used as a first order 

approximation of the transformation from a real-world coordinate (3D) to an image plane 

coordinate (2D).   

As such, a unique scale factor is all that is required to transform between real-world 

and image coordinates.  This scale factor is typically obtained by placing an object of a 

known length into the plane of movement, and this plane must be orthogonal to the optical 

axis of the camera.  The length of this object is measured (in image pixels) and this allows the 

digitised image coordinates to be translated into real-world coordinates.   This method is 

commonly used in commercial performance analysis software such as Dartfish™.  This 

calibration method assumes a linear pin-hole camera model.  This assumption is valid if there 

are negligible optical distortions in the image.  This would occur if (1) a telephoto lens is 

being used or (2) a high quality aspherical lens is used.  However, in cases where a wide FOV 

is used and image distortions occur, a non-linear camera calibration should be performed for 

2D kinematic analysis. 

The camera model used in this paper is from the OpenCV library described by Bradski 

and Kaehler
6
, and it is derived from Heikkilä and Silvén

15
.   OpenCV is a library of computer 
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vision programming functions developed by Intel.  The projection of a point in the camera 

coordinate system to the camera image plane is given by, 

  
 
 
 
   

     

     

   

  
 
 
 
  [1] 

where (X, Y, Z) are the coordinates of a 3D point in the camera coordinate system, (x, y) are 

the coordinates of the projected point in pixels, (cx, cy) is the principal point, fx and fy are the 

focal lengths expressed in pixel-related units, and s is a scale factor. 

The radial and tangential lens distortion models used in OpenCV are well 

documented
6
.  The radial distortion model is described by, 

             
     

     
    [2] 

             
     

     
    [3] 

and the tangential distortion model is described by, 

                    
        [4] 

               
              [5] 

where, 

         [6] 

 

and (x,y) is the location of the distorted point in the image,(xmodel,ymodel) is the new location 

calculated by the correction model, and k1-5 are the coefficients which are solved in the 

calibration optimisation routine.  The group of parameters (fx, fy, cx, cy, k1-5) are collectively 

called the camera intrinsic parameters.   
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The extrinsic camera parameters define the translation (T) and rotation (R) of the camera with 

respect to the global origin system.  These parameters are required to reconstruct the 

projected points on the image to the global origin system.  The reconstruction method used in 

this study is the same as that described by Dunn et al.
1
.    

The work in this paper uses a software package called Check2D which runs on the 

Microsoft™ Windows operating system.  Check2D was developed by the authors and uses an 

implementation of the planar calibration method from OpenCV.  The description of the 

method given here focuses on the practical considerations which are involved in the use of 

the camera calibration technique, rather than the mathematics of the optimisation routine.   

 

3. Application of the planar calibration method 

3.1  Practical considerations 

Check2D uses the OpenCV library to compute the intrinsic camera parameters.  This library 

uses multiple views of a planar object which has many individual and identifiable points of 

known geometry.  This object should be moved across the full range of the camera view and 

be held at various angles.  In general, the object is a printed checkerboard which has been 

securely attached to a flat, rigid object.  The checkerboard needs a white (or black) border 

(Figure 1).  The calibration procedure in OpenCV only requires two distinct views of a 

checkerboard to be able to calculate a solution for the intrinsic camera parameters
6,11

.  

However, this is analogous to the constraint that only two data points are required to calculate 

the parameters of a linear trend line         .    Clearly, a larger data set will improve 

the accuracy of the trend line parameters for data points which contain noise. 
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Figure 1.  A typical image of a checkerboard showing the white space around the squares.  

This space is used to locate the board in the image.  Each corner has been detected, and the 

square search area is superimposed on the image. 

 

The algorithm that OpenCV uses to solve for the focal lengths and principal points is 

based on Zhang
11

, but OpenCV uses a different method
16

 to solve for the distortion 

parameters.  When using Zhang’s algorithm, the position of the checkerboard must be moved 

significantly between views.  Otherwise, the matrices of points used to solve for calibration 

parameters may form an ill-conditioned (rank deficient) matrix and this will either lead to an 

incorrect solution or no solution. This is because two planes which are parallel to each other 

provide the same information as a single plane, albeit there are more detected checkerboard 

corners
11,17

.   Furthermore, OpenCV uses the vanishing point present in perspective views of 

the checkerboard to obtain an initial estimate of the intrinsic camera parameters.  Therefore, 

the solution will either be incorrect or slow to convergent when the image set mainly contains 

checkerboards with plane normals that are parallel to optical axis of the camera.  Bradski and 
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Kaehler
6
 qualitatively describe the collection of checkerboard images needed for calibration 

as “a rich set of views”.   

It is very difficult to prescribe the optimum number of checkerboard views required 

for an accurate camera calibration due to the large number of variables involved (image 

resolution, number and size of checkerboard squares, extrinsic parameters of checkerboard, 

amount of lens distortion, etc.).  Bradski & Kaehler
6
 advise a minimum of ten images of a 7-

by-8 (or larger) checkerboard, and reinforce that this advice is only valid when the 

checkerboard is moved sufficiently between images.    

The first stage in the calibration process is to automatically extract the image 

coordinates of the squares on the planar checkerboard, from a series of calibration images. 

This extraction method is multi-threaded in Check2D to reduce the execution time on a multi-

core CPU.  The extraction method searches for each checkerboard corner across a window 

(Figure 1) of size wint .  The size is defined by Bouguet
13

 using, 

          
 

   
 

 

  
  [7] 

 

where w and h are the image width and height respectively. 

It is important that the entire image is covered with points to maximise the accuracy 

of the camera model, especially when calculating the lens distortion parameters.  Check2D 

enables the user to do a visual check of the coverage by plotting all extracted corners on a 

single image.  This allows the user to make a qualitative assessment of the level of evenness 

in the distribution.   If the points are not evenly distributed across the image, then the validity 

of the camera model cannot be quantified for the entire image.  This is analogous to the task 

of calculating the parameters of a polynomial trend line              in the range 
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       .  For the coefficients to be correctly calculated, the regression analysis must use 

data points that are evenly distributed from x=0 to x=100.   

 

3.2 Model assumptions 

The default assumptions for the camera calibration model are to calculate the 

principal point and both radial and tangential distortions.  However, there are cases when the 

principal point should be assumed to be at the centre of the image plane, and/or that there are 

no lens distortions.  These assumptions are discussed below. 

Typically, the principal point should be calculated which means that the model will 

estimate the point (cx, cy).  The principal point is the intersection of the optical axis and the 

sensor plane.  This location will only be at the centre of the image plane if the lens and sensor 

are perfectly aligned.  If the location of the principal point (cx, cy) has been incorrectly 

calculated by the model, the user should override the model, and force the assumption that 

the principal point is at the image centre.  In these cases, it is at the discretion of the user to 

decide if the principal point has been calculated correctly.  This decision should be based on 

the consideration as to whether the lens and sensor are likely to be physically misaligned by 

the same magnitude as calculated by the model. 

The radial and tangential distortions should initially be calculated by the model, as 

defined by equations 2 to 5.  Check2D reports the magnitude of the two different distortion 

components, as calculated by these equations.   Two examples of lens distortion are given 

(Figure 2) for two different cameras, and two different fields-of-view.    The maximum radial 

distortion for the AXIS P1346 camera (Axis™ Communications, 1920x1080 pixels, 

progressive scan, 55° viewing angle) is approximately 60 pixels and the maximum tangential 
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distortion is approximately 1 pixel (Figure 2 (a)).  It is well documented that the radial 

distortion is the dominant distortion for most consumer level cameras
6,11

, and in this case 

study it would be advisable to rerun the solver using the assumption that only radial 

distortions are assumed.  The maximum radial distortion for the Sony HDR HC9 (Sony™ 

Corporation, 1920x1080, interlaced, 35° viewing angle) is approximately 5 pixels and the 

maximum tangential distortion is approximately 3 pixels (Figure 2 (b)).  Conventionally, the 

radial distortion would either be pincushion distortion or barrel distortion
11

, and the 

magnitude would increase with increasing distance from the principal point.  In this case, this 

does not occur, and is an example where a high order model has been incorrectly used and 

has led to numerical instability
11

.  In this case it would be advisable to rerun the camera 

calibration solver assuming that there are no radial or tangential distortions. 

 

 

Figure 2.   The magnitudes of the components of lens distortion for points along the u and v 

axis, for (a) Axis P1346 camera (viewing angle 55°) and (b) Sony HDR HC9 camera 

(viewing angle 35°).  Radial distortion is symmetrical around the principal point and 

therefore can be represented by a single curve.  
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3.3 Evaluation of model 

A Levenberg-Marquardt optimization algorithm is used to minimise the root mean 

square error (RMSE) in the reprojection.  This is calculated from the distances between the 

extracted checkerboard points and the projected points (calculated from the board extrinsic 

parameters and the converged solution for the camera model).   The optimization algorithm 

will terminate when either the maximum number of iterations has been reached or the epsilon 

() value has reached a value less than the termination criteria.  The value of  represents the 

magnitude of the change in the calibration parameters between iterations and this value 

should converge towards zero in the optimisation algorithm.  This indicates that a stable 

solution has been attained.   

It is well documented  that the accuracy of the calibration model is highly dependent 

on the board being rotated through a wide range of angles
11,17

 (Figure 3).  A board held 

orthogonal to the optical axis has a plane normal vector of [0, 0, -1] in the camera coordinate 

system.  In practice, the board is predominantly rotated about the x and y axes, and these 

angles are defined as  and when the plane is projected in the XZ and YZ plane 

respectively.  The value of these two angles can be exported from Check2D and (when 

plotted appropriately) can be used by the user to qualitatively conclude whether the angle 

variation is sufficient.  In a typical calibration data set, there will be insufficient data points to 

apply a valid statistical method, such as the Chi-squared distribution test, to quantify the 

evenness of the distribution of  and .   
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Figure 3.  Definition of the camera coordinate system and the projected angles ( is the angle 

projected in the YZ plane and  is angle project in the XZ plane). 

 

The maximum and minimum values of  and  are limited by (1) size of the square, (2) 

distance between board and camera, and (3) focal length of camera.    In Figure 1, the search 

window (of size (wint)) is plotted on the checkerboard at each corner.  The board must not be 

held in a position where the search windows overlap as this may lead to errors in the 

automated detection procedure. 

 

4. Case study 

The benefit of the planar calibration method used in Check2D can be demonstrated by 

considering a typical usage example.  In this example, the objective was to measure the 
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horizontal velocity of a backstroke swimmer in a swimming pool.  It was assumed that the 

leading edge of the swimmer’s head was a valid discrete digitisation point to approximate the 

centre-of-mass (horizontal) motion. The swimmer’s head was assumed to move in the plane 

of the surface of the swimming pool. 

The testing was conducted at Ponds Forge International Swimming Pool in Sheffield 

(UK).  The camera was placed on a tripod in the spectator gallery.  An AXIS P1346 camera 

was used (Axis™ Communications, 1920x1080 pixels, progressive scan).  The camera 

(horizontal) angle of view was 54° and parts of the image were masked for privacy reasons.  

The swimmers were only in lanes 5 to 9, and the control volume was 20 m x 12.5 m (Figure 

4).   The camera was placed on a tripod at the highest location in the spectators viewing 

gallery, but still required the widest setting on the zoom lens to be used to achieve the 

required field-of-view.  Check2D was used to calculate the intrinsic parameters of the camera 

(including lens distortion).    

Figure 4.  A typical view of the swimming pool showing the world coordinate system of the 

20 m x 12.5 m control volume.  The nine (known) control points are denoted by crosses. 
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The camera was focused on the lane rope at the centre of the image, and manually locked to 

prevent any changes.  This camera has a very large depth of field which meant that 

checkerboards held two metres away from the camera are in also in focus.  The camera focus 

and zoom were locked after filming, which allowed the camera to be calibrated when back in 

the office.  The camera was calibrated using 30 images of an 8-by-8 checkerboard with 

square size of 30 mm (Figure 5).  The checkerboard corners which were extracted from all 

images are superimposed on the first image to illustrate that the entire sensor was covered.    

The intrinsic parameters for the camera were calculated for the swimming pool (Table 1).  

The tangential distortion was not calculated as it was negligible compared to the radial 

distortion.  The model gave an RMSE reprojection error of 0.296 pixels.   

   

Figure 5.  Typical views of a checkerboard moved around the view.  The first image shows 

the extracted checkerboard corners from all images. 

The Check2D software requires the location of at least 4 control points to determine the 

translation (T) and rotation (R) of the camera with respect to the world origin system (Figure 

4). The location and orientation of the camera (T and R) are referred to as the extrinsic 
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camera parameters.  In the current study, nine control points were used to determine the 

extrinsic camera parameters.  These control points are located on the swimming pool wall (at 

water level) as this is the only static object in the control volume plane, and are superimposed 

on the image (Figure 4).   

Table 1.  Intrinsic and extrinsic camera parameters for swimming pool and scale model 

experiments 

  Swimming pool Scale model 

   

 Focal length (pixels)  fx 2421.2 2378.3 

fy 2410.4 2367.8 

Principal point (pixels) cx 918.7 969.8 

cy 487.3 507.8 

Radial distortion k1 -0.365 -0.371 

k2 0.182 0.203 

k3 0 0 

RMSE reprojection (pixels)   0.296 0.434 

    Translation (mm) T [10038  -800  41631]’ [91  -12  412]’ 

Rotation R [0.0468  2.472  -1.877]’ [0.0591  2.468  -1.865]’ 

RMSE reprojection (mm)   25.2 0.4 

 

The main purpose of the Check2D software is to transform the projected points on an image 

to the world coordinate system.  However, the accuracy of this transformation cannot easily 

be validated in this case study because (1) the control volume plane is very large and (2) it is 

impractical to place markers at known locations on the water surface.  
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The validity of the method can be tested using a scale model of the experiment, as 

done by Dunn et al.
1
.  A 1:100 scale model of the swimming pool is represented by a 

checkerboard consisting of 22 by 12 squares with a square size of 10 mm (Figure 6).   The 

camera (horizontal) angle of view was set at 54° (as for the swimming pool study) and the 

lens was manually focused.  In the scale model environment, the camera was positioned using 

an iterative method, to achieve an equivalent perspective view of the control volume.  This 

was done by overlaying the (scaled) positions of the nine control points onto a live image 

feed from the camera. The camera was then translated and rotated until the points were 

aligned correctly on the image.   

The intrinsic and extrinsic camera parameters for the scale model environment are 

shown in Table 1. The rotation R is represented by a Rodrigues vector
6
.  The intrinsic 

parameters are similar and the different focus setting is the likely cause of the differences.  

The maximum difference in the scaled translation components was less than 10 mm which 

illustrates the efficacy of this approach. 

The accuracy of the Check2D method was compared to the 2D-DLT method.  The 

nine control points (that were used to obtain the extrinsic camera parameters in the swimming 

pool experiment) were used to obtain the DLT coefficients.    The RMSE reconstruction for 

the nine control points was 0.9 mm.  For comparison, an additional set of DLT parameters 

were also calculated using known positions in the scale model experiment, which would be 

on the water surface in the swimming pool experiment.   In this case, a total of 16 DLT 

control points were used and the locations of the additional seven points are also 

superimposed on the image (Figure 6).  The RMSE reconstruction for the nine control points 

was 1.3 mm.  Clearly this would have been impractical for the swimming pool study, but 

adheres more closely to the principles on which the 2D-DLT method is based where by the 

control points encompass the control volume. 
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Figure 6.  1:100 scale model of swimming pool control volume, showing the world 

coordinate system.  Each square is 10 mm.  The control points (for the DLT method) are 

superimposed as crosses on the image. 

 

For the scale model experiment, each checkerboard corner was automatically extracted.  This 

gave a sample of reconstruction points (N=231).  These points were reconstructed using 

standard 2D-DLT routines
18

 and using Check2D.   

The RMSE between reconstructed and real world coordinates was calculated 

separately for the x and y coordinates denoted as RMSEx and RMSEy respectively. These were 

calculated using, 

 

                     
 
     

    [8] 

 

                     
 
     

    [9] 
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where Pi  is the real world location, pi is the reconstructed location and N is the number of 

points used. The overall resultant RMSE was also calculated using, 

            
       

   [10] 

 

The resultant RMSE for Check2D is the lowest of the three reconstruction methods 

(Table 2). The RMSE is lower for the DLT method when more control points are used.   

 

Table 2. Root mean square error, maximum error, mean error and standard deviation for 

reconstruction points (N=231) in scale model. 

  Check2D DLT (9 points) 

DLT (16 

points) 

RMSEx (mm) 0.19 1.21 0.83 

RMSEy (mm) 0.36 1.01 0.31 

RMSE (mm) 0.41 1.57 0.88 

Maximum error - x (mm) 0.20 2.88 1.28 

Maximum error - y (mm) 0.56 2.47 1.03 

Mean error - x (mm) -0.15 0.27 -0.18 

StDev -x (mm) 0.12 1.18 0.81 

Mean error - y (mm) -0.19 0.79 0.12 

StDev -y (mm) 0.31 0.64 0.29 
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The objective of the swimming pool experiment was to measure the velocity of the 

swimmer.  The RMSEy value was marginally lower for DLT (16 control points) than planar 

calibration in the y direction. However, swimmers move predominately along the x-axis and 

therefore it can be concluded that the RMSEx is the more important error term.  The RMSEx is 

0.19 mm and 0.83 mm for Check2D and DLT (16 control points) respectively, emphasising 

the increased accuracy obtained using the planar calibration method for this camera.   

The maximum error (for both x and y axis) is lowest for the Check2D method (Table 

2).  A comparison of the maximum errors for the Check2D and DLT (nine control points) 

methods, 0.2 mm and 2.88 mm respectively, emphasises the high inaccuracy associated with 

using the DLT with these nine control points.   

The mean errors (in the x axis) are similar for both Check2D and DLT (16 control 

points).  However, the standard deviation of the errors is considerably higher for the DLT 

(16) method compared to Check2D, being 0.81 and 0.12 respectively.  The high standard 

deviation value signifies that the errors have a large range for the DLT (16) method.  This 

illustrates that, even when using control points that surround the control volume, the DLT 

method has significantly higher errors than Check2D. 

It is assumed that the error values obtained for the scale model experiment can be 

applied to the swimming pool experiment by scaling appropriately.  For example, RMSEx 

would be 19 mm for the Check2D method in the swimming pool experiment.  Furthermore, 

the scaled maximum error for DLT (9 points) would be 288 mm (in the x axis). 
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5.  Conclusions 

It has been shown that the intrinsic and extrinsic parameters of a consumer level 

camera can easily be obtained using the planar calibration method.  The calibration object is a 

checkerboard that can be printed on an office laser printer and attached to a rigid flat surface.   

The Check2D software application has been developed to facilitate this task.  The user must 

decide what level of complexity is assumed for the model, and can use the diagnostic output 

from Check2D (radial/tangential distortion components, etc.) to inform that decision.  The 

errors associated with using this method for a 2D kinematic analysis case study have been 

shown to be significantly smaller than those calculated using the direct linear transformation 

(DLT) technique. 
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